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5.1 Subspaces and Spanning

In Section 2.2 we introduced the set Rn of all n-tuples (called vectors), and began our investigation of
the matrix transformations Rn →Rm given by matrix multiplication by an m×n matrix. Particular
attention was paid to the euclidean plane R2 where certain simple geometric transformations were
seen to be matrix transformations. Then in Section 2.6 we introduced linear transformations, showed
that they are all matrix transformations, and found the matrices of rotations and reflections in R2.
We returned to this in Section 4.4 where we showed that projections, reflections, and rotations of
R2 and R3 were all linear, and where we related areas and volumes to determinants.

In this chapter we investigate Rn in full generality, and introduce some of the most important
concepts and methods in linear algebra. The n-tuples in Rn will continue to be denoted x, y, and
so on, and will be written as rows or columns depending on the context.

Subspaces of Rn

Definition 5.1 Subspace of Rn

A set1U of vectors in Rn is called a subspace of Rn if it satisfies the following properties:

S1. The zero vector 0 ∈U .

S2. If x ∈U and y ∈U , then x+y ∈U .

S3. If x ∈U , then ax ∈U for every real number a.

We say that the subset U is closed under addition if S2 holds, and that U is closed under
scalar multiplication if S3 holds.

Clearly Rn is a subspace of itself, and this chapter is about these subspaces and their properties.
The set U = {0}, consisting of only the zero vector, is also a subspace because 0+0 = 0 and a0 = 0
for each a in R; it is called the zero subspace. Any subspace of Rn other than {0} or Rn is called
a proper subspace.

y

z

x

n

M

We saw in Section 4.2 that every plane M through the origin in
R3 has equation ax+ by+ cz = 0 where a, b, and c are not all zero.

Here n =

 a
b
c

 is a normal for the plane and

M = {v in R3 | n ·v = 0}

1We use the language of sets. Informally, a set X is a collection of objects, called the elements of the set. The
fact that x is an element of X is denoted x ∈ X . Two sets X and Y are called equal (written X = Y ) if they have the
same elements. If every element of X is in the set Y , we say that X is a subset of Y , and write X ⊆ Y . Hence X ⊆ Y
and Y ⊆ X both hold if and only if X = Y .
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where v =

 x
y
z

 and n · v denotes the dot product introduced in

Section 2.2 (see the diagram).2 Then M is a subspace of R3. Indeed
we show that M satisfies S1, S2, and S3 as follows:

S1. 0 ∈ M because n ·0 = 0;

S2. If v ∈ M and v1 ∈ M , then n · (v+v1) = n ·v+n ·v1 = 0+0 = 0 , so v+v1 ∈ M;

S3. If v ∈ M , then n · (av) = a(n ·v) = a(0) = 0 , so av ∈ M.

This proves the first part of

Example 5.1.1

y

z

x

d
L

Planes and lines through the origin in R3 are all subspaces
of R3.

Solution. We dealt with planes above. If L is a line through
the origin with direction vector d, then L = {td | t ∈ R}
(see the diagram). We leave it as an exercise to verify that L

satisfies S1, S2, and S3.

Example 5.1.1 shows that lines through the origin in R2 are subspaces; in fact, they are the only
proper subspaces of R2 (Exercise 5.1.24). Indeed, we shall see in Example 5.2.14 that lines and
planes through the origin in R3 are the only proper subspaces of R3. Thus the geometry of lines
and planes through the origin is captured by the subspace concept. (Note that every line or plane
is just a translation of one of these.)

Subspaces can also be used to describe important features of an m×n matrix A. The null space
of A, denoted null A, and the image space of A, denoted im A, are defined by

null A = {x ∈ Rn | Ax = 0} and im A = {Ax | x ∈ Rn}

In the language of Chapter 2, null A consists of all solutions x in Rn of the homogeneous system
Ax = 0, and im A is the set of all vectors y in Rm such that Ax = y has a solution x. Note that x is
in null A if it satisfies the condition Ax = 0, while im A consists of vectors of the form Ax for some
x in Rn. These two ways to describe subsets occur frequently.

2We are using set notation here. In general {q | p} means the set of all objects q with property p.
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Example 5.1.2

If A is an m×n matrix, then:

1. null A is a subspace of Rn.

2. im A is a subspace of Rm.

Solution.

1. The zero vector 0 ∈ Rn lies in null A because A0 = 0.3If x and x1 are in null A, then
x+x1 and ax are in null A because they satisfy the required condition:

A(x+x1) = Ax+Ax1 = 0+0 = 0 and A(ax) = a(Ax) = a0 = 0

Hence null A satisfies S1, S2, and S3, and so is a subspace of Rn.

2. The zero vector 0 ∈ Rm lies in im A because 0 = A0. Suppose that y and y1 are in
im A, say y = Ax and y1 = Ax1 where x and x1 are in Rn. Then

y+y1 = Ax+Ax1 = A(x+x1) and ay = a(Ax) = A(ax)

show that y+y1 and ay are both in im A (they have the required form). Hence im A
is a subspace of Rm.

There are other important subspaces associated with a matrix A that clarify basic properties of
A. If A is an n×n matrix and λ is any number, let

Eλ (A) = {x ∈ Rn | Ax = λx}

A vector x is in Eλ (A) if and only if (λ I −A)x = 0, so Example 5.1.2 gives:

Example 5.1.3

Eλ (A) = null (λ I −A) is a subspace of Rn for each n×n matrix A and number λ .

Eλ (A) is called the eigenspace of A corresponding to λ . The reason for the name is that, in the
terminology of Section 3.3, λ is an eigenvalue of A if Eλ (A) 6= {0}. In this case the nonzero vectors
in Eλ (A) are called the eigenvectors of A corresponding to λ .

The reader should not get the impression that every subset of Rn is a subspace. For example:

U1 =

{[
x
y

]∣∣∣∣x ≥ 0
}

satisfies S1 and S2, but not S3;

U2 =

{[
x
y

]∣∣∣∣x2 = y2
}

satisfies S1 and S3, but not S2;

Hence neither U1 nor U2 is a subspace of R2. (However, see Exercise 5.1.20.)
3We are using 0 to represent the zero vector in both Rm and Rn. This abuse of notation is common and causes

no confusion once everybody knows what is going on.
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Spanning Sets

Let v and w be two nonzero, nonparallel vectors in R3 with their tails at the origin. The plane
M through the origin containing these vectors is described in Section 4.2 by saying that n = v×w
is a normal for M, and that M consists of all vectors p such that n ·p = 0.4 While this is a very
useful way to look at planes, there is another approach that is at least as useful in R3 and, more
importantly, works for all subspaces of Rn for any n ≥ 1.

0
v

av

w bw

p

M

The idea is as follows: Observe that, by the diagram, a vector p
is in M if and only if it has the form

p = av+bw

for certain real numbers a and b (we say that p is a linear combination
of v and w). Hence we can describe M as

M = {ax+bw | a, b ∈ R}.5

and we say that {v, w} is a spanning set for M. It is this notion of a spanning set that provides a
way to describe all subspaces of Rn.

As in Section 1.3, given vectors x1, x2, . . . , xk in Rn, a vector of the form

t1x1 + t2x2 + · · ·+ tkxk where the ti are scalars

is called a linear combination of the xi, and ti is called the coefficient of xi in the linear
combination.

Definition 5.2 Linear Combinations and Span in Rn

The set of all such linear combinations is called the span of the xi and is denoted

span{x1, x2, . . . , xk}= {t1x1 + t2x2 + · · ·+ tkxk | ti in R}

If V = span{x1, x2, . . . , xk}, we say that V is spanned by the vectors x1, x2, . . . , xk, and
that the vectors x1, x2, . . . , xk span the space V .

Here are two examples:
span{x}= {tx | t ∈ R}

which we write as span{x}= Rx for simplicity.

span{x, y}= {rx+ sy | r, s ∈ R}

In particular, the above discussion shows that, if v and w are two nonzero, nonparallel vectors in
R3, then

M = span{v, w}
4The vector n = v×w is nonzero because v and w are not parallel.
5In particular, this implies that any vector p orthogonal to v×w must be a linear combination p = av+bw of v

and w for some a and b. Can you prove this directly?
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is the plane in R3 containing v and w. Moreover, if d is any nonzero vector in R3 (or R2), then
L = span{v}= {td | t ∈ R}= Rd

is the line with direction vector d. Hence lines and planes can both be described in terms of spanning
sets.

Example 5.1.4

Let x = (2, −1, 2, 1) and y = (3, 4, −1, 1) in R4. Determine whether p = (0, −11, 8, 1) or
q = (2, 3, 1, 2) are in U = span{x, y}.

Solution. The vector p is in U if and only if p = sx+ ty for scalars s and t. Equating
components gives equations

2s+3t = 0, −s+4t =−11, 2s− t = 8, and s+ t = 1

This linear system has solution s = 3 and t =−2, so p is in U . On the other hand, asking
that q = sx+ ty leads to equations

2s+3t = 2, −s+4t = 3, 2s− t = 1, and s+ t = 2

and this system has no solution. So q does not lie in U .

Theorem 5.1.1: Span Theorem

Let U = span{x1, x2, . . . , xk} in Rn. Then:

1. U is a subspace of Rn containing each xi.

2. If W is a subspace of Rn and each xi ∈W , then U ⊆W .

Proof.
1. The zero vector 0 is in U because 0 = 0x1 +0x2 + · · ·+0xk is a linear combination of the xi.

If x = t1x1 + t2x2 + · · ·+ tkxk and y = s1x1 + s2x2 + · · ·+ skxk are in U , then x+y and ax are
in U because

x+y = (t1 + s1)x1 +(t2 + s2)x2 + · · ·+(tk + sk)xk, and
ax = (at1)x1 +(at2)x2 + · · ·+(atk)xk

Finally each xi is in U (for example, x2 = 0x1+1x2+ · · ·+0xk) so S1, S2, and S3 are satisfied
for U , proving (1).

2. Let x = t1x1 + t2x2 + · · ·+ tkxk where the ti are scalars and each xi ∈ W . Then each tixi ∈ W
because W satisfies S3. But then x ∈W because W satisfies S2 (verify). This proves (2).

Condition (2) in Theorem 5.1.1 can be expressed by saying that span{x1, x2, . . . , xk} is the
smallest subspace of Rn that contains each xi. This is useful for showing that two subspaces U and
W are equal, since this amounts to showing that both U ⊆ W and W ⊆ U . Here is an example of
how it is used.
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Example 5.1.5

If x and y are in Rn, show that span{x, y}= span{x+y, x−y}.

Solution. Since both x+y and x−y are in span{x, y}, Theorem 5.1.1 gives

span{x+y, x−y} ⊆ span{x, y}

But x = 1
2(x+y)+ 1

2(x−y) and y = 1
2(x+y)− 1

2(x−y) are both in span{x+y, x−y}, so

span{x, y} ⊆ span{x+y, x−y}

again by Theorem 5.1.1. Thus span{x, y}= span{x+y, x−y}, as desired.

It turns out that many important subspaces are best described by giving a spanning set. Here
are three examples, beginning with an important spanning set for Rn itself. Column j of the
n× n identity matrix In is denoted e j and called the jth coordinate vector in Rn, and the set

{e1, e2, . . . , en} is called the standard basis of Rn. If x =


x1
x2

...
xn

 is any vector in Rn, then

x = x1e1 + x2e2 + · · ·+ xnen, as the reader can verify. This proves:

Example 5.1.6

Rn = span{e1, e2, . . . , en} where e1, e2, . . . , en are the columns of In.

If A is an m×n matrix A, the next two examples show that it is a routine matter to find spanning
sets for null A and im A.

Example 5.1.7

Given an m×n matrix A, let x1, x2, . . . , xk denote the basic solutions to the system Ax = 0
given by the gaussian algorithm. Then

null A = span{x1, x2, . . . , xk}

Solution. If x ∈ null A, then Ax = 0 so Theorem 1.3.2 shows that x is a linear combination
of the basic solutions; that is, null A ⊆ span{x1, x2, . . . , xk}. On the other hand, if x is in
span{x1, x2, . . . , xk}, then x = t1x1 + t2x2 + · · ·+ tkxk for scalars ti, so

Ax = t1Ax1 + t2Ax2 + · · ·+ tkAxk = t10+ t20+ · · ·+ tk0 = 0

This shows that x ∈ null A, and hence that span{x1, x2, . . . , xk} ⊆ null A. Thus we have
equality.
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Example 5.1.8

Let c1, c2, . . . , cn denote the columns of the m×n matrix A. Then

im A = span{c1, c2, . . . , cn}

Solution. If {e1, e2, . . . , en} is the standard basis of Rn, observe that[
Ae1 Ae2 · · · Aen

]
= A

[
e1 e2 · · · en

]
= AIn = A =

[
c1 c2 · · ·cn

]
.

Hence ci = Aei is in im A for each i, so span{c1, c2, . . . , cn} ⊆ im A.

Conversely, let y be in im A, say y = Ax for some x in Rn. If x =


x1
x2
...

xn

, then

Definition 2.5 gives

y = Ax = x1c1 + x2c2 + · · ·+ xncn is in span{c1, c2, . . . , cn}

This shows that im A ⊆ span{c1, c2, . . . , cn}, and the result follows.

Exercises for 5.1

We often write vectors in Rn as rows.
Exercise 5.1.1 In each case determine whether U
is a subspace of R3. Support your answer.

a. U = {(1, s, t) | s and t in R}.

b. U = {(0, s, t) | s and t in R}.

c. U = {(r, s, t) | r, s, and t in R,
− r+3s+2t = 0}.

d. U = {(r, 3s, r−2) | r and s in R}.

e. U = {(r, 0, s) | r2 + s2 = 0, r and s in R}.

f. U = {(2r, −s2, t) | r, s, and t in R}.

b. Yes

d. No

f. No.

Exercise 5.1.2 In each case determine if x lies in
U = span{y, z}. If x is in U , write it as a linear
combination of y and z; if x is not in U , show why
not.

a. x = (2, −1, 0, 1), y = (1, 0, 0, 1), and
z = (0, 1, 0, 1).

b. x = (1, 2, 15, 11), y = (2, −1, 0, 2), and
z = (1, −1, −3, 1).

c. x = (8, 3, −13, 20), y = (2, 1, −3, 5), and
z = (−1, 0, 2, −3).

d. x = (2, 5, 8, 3), y = (2, −1, 0, 5), and
z = (−1, 2, 2, −3).
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b. No

d. Yes, x = 3y+4z.

Exercise 5.1.3 In each case determine if the given
vectors span R4. Support your answer.

a. {(1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1)}.

b. {(1, 3, −5, 0), (−2, 1, 0, 0), (0, 2, 1, −1),
(1, −4, 5, 0)}.

b. No

Exercise 5.1.4 Is it possible that
{(1, 2, 0), (2, 0, 3)} can span the subspace
U = {(r, s, 0) | r and s in R}? Defend your answer.

Exercise 5.1.5 Give a spanning set for the zero
subspace {0} of Rn.

Exercise 5.1.6 Is R2 a subspace of R3? Defend
your answer.

Exercise 5.1.7 If U = span{x, y, z} in Rn, show
that U = span{x+ tz, y, z} for every t in R.

Exercise 5.1.8 If U = span{x, y, z} in Rn, show
that U = span{x+y, y+z, z+x}.

Exercise 5.1.9 If a 6= 0 is a scalar, show that
span{ax}= span{x} for every vector x in Rn.

Exercise 5.1.10 If a1, a2, . . . , ak are nonzero
scalars, show that span{a1x1, a2x2, . . . , akxk} =
span{x1, x2, . . . , xk} for any vectors xi in Rn.

span{a1x1, a2x2, . . . , akxk} ⊆ span{x1, x2, . . . , xk}
by Theorem 5.1.1 because, for each i, aixi is in
span{x1, x2, . . . , xk}. Similarly, the fact that
xi = a−1

i (aixi) is in span{a1x1, a2x2, . . . , akxk}
for each i shows that span{x1, x2, . . . , xk} ⊆
span{a1x1, a2x2, . . . , akxk}, again by Theo-
rem 5.1.1.

Exercise 5.1.11 If x 6= 0 in Rn, determine all sub-
spaces of span{x}.

Exercise 5.1.12 Suppose that U =
span{x1, x2, . . . , xk} where each xi is in Rn. If A is an
m×n matrix and Axi = 0 for each i, show that Ay= 0
for every vector y in U .
If y = r1x1 + · · ·+ rkxk then Ay = r1(Ax1) + · · ·+
rk(Axk) = 0.

Exercise 5.1.13 If A is an m × n matrix, show
that, for each invertible m×m matrix U , null (A) =
null (UA).

Exercise 5.1.14 If A is an m×n matrix, show that,
for each invertible n×n matrix V , im (A) = im (AV ).

Exercise 5.1.15 Let U be a subspace of Rn, and
let x be a vector in Rn.

a. If ax is in U where a 6= 0 is a number, show
that x is in U .

b. If y and x+y are in U where y is a vector in
Rn, show that x is in U .

b. x = (x+y)−y = (x+y)+ (−y) is in U be-
cause U is a subspace and both x + y and
−y = (−1)y are in U .

Exercise 5.1.16 In each case either show that the
statement is true or give an example showing that it
is false.

a. If U 6= Rn is a subspace of Rn and x+y is in
U , then x and y are both in U .

b. If U is a subspace of Rn and rx is in U for all
r in R, then x is in U .

c. If U is a subspace of Rn and x is in U , then
−x is also in U .

d. If x is in U and U = span{y, z}, then U =
span{x, y, z}.

e. The empty set of vectors in Rn is a subspace
of Rn.

f.
[

0
1

]
is in span

{[
1
0

]
,

[
2
0

]}
.

b. True. x = 1x is in U .



272 CONTENTS

d. True. Always span{y, z} ⊆ span{x, y, z} by
Theorem 5.1.1. Since x is in span{x, y} we
have span{x, y, z} ⊆ span{y, z}, again by
Theorem 5.1.1.

f. False. a
[

1
0

]
+ b

[
2
0

]
=

[
a+2b

0

]
cannot

equal
[

0
1

]
.

Exercise 5.1.17

a. If A and B are m×n matrices, show that
U = {x in Rn | Ax = Bx} is a subspace of Rn.

b. What if A is m×n, B is k×n, and m 6= k?

Exercise 5.1.18 Suppose that x1, x2, . . . , xk
are vectors in Rn. If y = a1x1 + a2x2 + · · ·+ akxk
where a1 6= 0, show that span{x1 x2, . . . , xk} =
span{y1, x2, . . . , xk}.

Exercise 5.1.19 If U 6= {0} is a subspace of R,
show that U = R.

Exercise 5.1.20 Let U be a nonempty subset of
Rn. Show that U is a subspace if and only if S2 and
S3 hold.
If U is a subspace, then S2 and S3 certainly hold.
Conversely, assume that S2 and S3 hold for U . Since
U is nonempty, choose x in U . Then 0 = 0x is in U
by S3, so S1 also holds. This means that U is a
subspace.

Exercise 5.1.21 If S and T are nonempty sets of
vectors in Rn, and if S ⊆ T , show that span{S} ⊆
span{T}.

Exercise 5.1.22 Let U and W be subspaces
of Rn. Define their intersection U ∩ W and
their sum U +W as follows: U ∩W = {x ∈ Rn |
x belongs to both U and W}. U +W = {x ∈ Rn |
x is a sum of a vector in U
and a vector in W}.

a. Show that U ∩W is a subspace of Rn.

b. Show that U +W is a subspace of Rn.

b. The zero vector 0 is in U +W because 0 =
0+0. Let p and q be vectors in U +W , say
p = x1 + y1 and q = x2 + y2 where x1 and
x2 are in U , and y1 and y2 are in W . Then
p+q = (x1 +x2)+ (y1 +y2) is in U +W be-
cause x1+x2 is in U and y1+y2 is in W . Sim-
ilarly, a(p+q) = ap+ aq is in U +W for any
scalar a because ap is in U and aq is in W .
Hence U +W is indeed a subspace of Rn.

Exercise 5.1.23 Let P denote an invertible n× n
matrix. If λ is a number, show that

Eλ (PAP−1) = {Px | x is in Eλ (A)}

for each n×n matrix A.

Exercise 5.1.24 Show that every proper subspace
U of R2 is a line through the origin. [Hint: If d is a
nonzero vector in U , let L = Rd = {rd | r in R} de-
note the line with direction vector d. If u is in U
but not in L, argue geometrically that every vector
v in R2 is a linear combination of u and d.]
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